Geometry 5.3-Theorems Involving Parallel Lines 2016-Key.notebook

Theorem: If two lines are parallel, then all points on one line are

equidistant from the other line.

Given: 1//m; $\overline{AC} \perp m$; $\overline{BD} \perp m$

A and B are any points on /

Prove: AC = BD

	Statements	Reasons
1	$l//m : \overline{AC} \perp m : \overline{BD} \perp m$	Given
2	ACII BO	In a plane, 2 lines I to the same line on 11.
3	ARAC isa []	Del. of 17
4	Ac = BD	opp. siles of a Das =.
5	AC = BD	Dd. d = seg.

Theorem: If three (or more) parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

Given: $\overline{AX} / / \overline{BY} / / \overline{CZ}$;

 $\overline{AB} \cong \overline{BC}$

Prove: $\overline{XY} \cong \overline{YZ}$

Statements Reasons	<u>L</u> .
$1 \overline{AX} / / \overline{BY} / / \overline{CZ} , \overline{AB} \cong \overline{BC}$	Given
2 Draw \overline{RX} and \overline{SY} parallel to \overline{AC} .	11 Post.
3 DABRY, DBCSY	Del. of D
4 AB = VR, BC = SY	opp.sidsdaDn=
5 RX = 5Y	Trus. Prop- of €
6 41= 43, L3=24, 44=22, 15=16	Coer. Ls Post.
7 /12/2	Trons. Pop. of =
8 AKRY =AYSZ	AAS=Thon
$9 \overline{XY} \cong \overline{YZ}$	CPCTC

Theorem: A line that contains the midpoint of one side of a triangle and is parallel to another side passes through the midpoint of the third side.

Given: M is the midpoint of \overline{AB} ; $\overline{MN}//\overline{BC}$

Prove: N is the midpoint of \overline{AC} .

	Statements	Reasons
1	M is the midpoint of \overline{AB} : \overline{MN} / \overline{BC}	Given
2	Draw \overrightarrow{AD} parallel to \overrightarrow{MN} .	11 Post
3	AMEMB	Def. of modet
4	AN = NC	If 3 // lines cut off = srg. on / towns., they cut off = srg. on every transversal.
5	N is the midpoint of \overline{AC} .	Def. of midpt.

A midsegment connects any two midpoints of two sides of a triangle.

How many midsegments does a triangle have? 3

Triangle Midsegment Theorem:

The midsegment of a triangle is parallel to the third side and half as long as the third side.

Show MN // AC.

m of MN = $\frac{\Delta y}{\Delta n} = \frac{b-b}{a+c-a} = \frac{0}{c} = 0$ m of AC = $\frac{\Delta y}{\Delta n} = \frac{0-0}{a+c-a} = \frac{0}{c} = 0$ Same slope $\Rightarrow mN // AC$

$$MN = 44c-\alpha$$
 $AC = 2c-0$
 $MN = C$ $AC = 2C$
 $C = 2(2C)$
 $C = C$

A (0,0) (a+c) (a+c

In the diagram, \overline{DE} , \overline{EF} , and \overline{DF} are midsegments of $\triangle ABC$

1. Prove: AEFD is a parallelogram

	$A \longrightarrow C$
Statements	Reason s
$\overline{\mathbb{D}E}$, \overline{EF} , and \overline{DF} are midsegments	Given
DEF // AC, FD // AB	A Midsymut Thm
3 AEFA isa I	Def. of [